Comm. Alg. Sheet 2

1. Let F be a field and let Y be a set of polynomials in k variables over F. Prove that there exist finitely many polynomials $f_{1}, \ldots, f_{m} \in Y$ such that for $u_{1}, \ldots, u_{k} \in F^{k}$,

$$
f\left(u_{1}, \ldots, u_{k}\right)=0 \forall f \in Y \quad \Longleftrightarrow f_{j}\left(u_{1}, \ldots, u_{k}\right)=0 \text { for } j=1, \ldots, m
$$

2. Let W be an algebraic set in F^{k} (F a field). Put $I=\mathcal{I}(W)$. Prove:
(i) $W=\mathcal{V}(I)$. (ii) $I=\operatorname{rad}(I)$.
(iii) Both F^{k} and \varnothing are algebraic sets.
(iv) The union of two algebraic sets in F^{k} is an algebraic set.
(v) The intersection of any collection of algebraic sets in F^{k} is an algebraic set.
Remark. (iii) - (v) say that the set of all algebraic sets in F^{k} is the set of closed sets in a certain topology: this is called the Zariski topology.
3. An algebraic set W is irreducible if it is not the union of two proper algebraic subsets. (i) Prove that this holds if and only if $\mathcal{I}(W)$ is a prime ideal. (ii) Prove that every algebraic set is the union of finitely many irreducible algebraic subsets. (Hint: consider a counterexample W with $\mathcal{I}(W)$ as big as possible.) (iii) What's wrong with the following argument: If $I=\mathcal{I}(W)$ then $I=\operatorname{rad}(I)=P_{1} \cap \ldots \cap P_{m}$ with the P_{i} minimal primes of I. Then $W=\bigcup V_{i}$ where $V_{i}=\mathcal{V}\left(P_{i}\right)$ is irreducible?
4. Let F be a field, $R=F\left[t_{1}, \ldots, t_{k}\right]$. For $\mathbf{u}=\left(u_{1}, \ldots, u_{k}\right) \in F^{k}$ define $e_{\mathbf{u}}: R \rightarrow F$ by $e_{\mathbf{u}}(f)=f(\mathbf{u})=f\left(u_{1}, \ldots, u_{k}\right)$. Put

$$
\mu(\mathbf{u})=\sum_{i=1}^{k}\left(t_{i}-u_{i}\right) R .
$$

(i) Prove that $R=\mu(\mathbf{u}) \oplus F$. Deduce (ii) $\mu(\mathbf{u}) \underset{\max }{\triangleleft} R$, (iii) $\mu(\mathbf{u})=\operatorname{ker} e_{\mathbf{u}}$, (iv) $\mu(\mathbf{u})=\mu(\mathbf{v}) \Longleftrightarrow \mathbf{u}=\mathbf{v}$. (v) Prove: an ideal I of R is of the form $\mu(\mathbf{u})$ for some $\mathbf{u} \in F^{k}$ if and only if it has codimension one, i.e. $\operatorname{dim}_{F}(R / I)=1$.
5. (i) Let F be a field, $R=F\left[t_{1}, \ldots, t_{k}\right]$. Let Y be a subset of R. Then $\mu(\mathcal{V}(Y))$ is a set of maximal ideals of R : identify this set. (Now you have transformed geometry into algebra!)
(ii) Suppose that F not algebraically closed; prove that not every maximal ideal of R is of the form $\mu(\mathbf{u})$.
6. Let F be an algebraically closed field and f_{1}, \ldots, f_{n} polynomials in k variables over F. The system of simultaneous equations

$$
\mathcal{F}: f_{1}\left(x_{1}, \ldots, x_{k}\right)=0, \ldots, f_{n}\left(x_{1}, \ldots, x_{k}\right)=0
$$

is said to be inconsistent if there exist polynomials g_{1}, \ldots, g_{n} such that $\sum_{i=1}^{n} f_{i} g_{i}=$ 1.
(i) Prove that the system of equations \mathcal{F} has a solution if and only if it is not inconsistent.
(ii) Suppose that the f_{i} have all coefficients in \mathbb{Q}, and that the system \mathcal{F} has a solution in \mathbb{C}^{k}. Prove that it has a solution $\left(x_{1}, \ldots, x_{k}\right)$ with each x_{i} an algebraic number (i.e. algebraic over \mathbb{Q}).

